

	Year R(Number and Numerical Patterns)		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Nursery	Reception						
Place Value	By the end of Reception: Number ELG: - Have a deep understanding of number to 10 , including the composition of each number. - Subitise (recognise quantities without counting) up to 5 . - Automatically recall (without reference to rhymes, counting or other aids) number bonds to 10 , including double facts. Numerical Patterns ELG: - Verbally count beyond 20 , recognizing the pattern of the counting system. - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, or less than or the same as another quantity. - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.		By the end of Year 2, pupid - count in steps of 2, 3, a any number, fo - recognise the place valu number - identify, represent and different representatio compare and order numb - read and write numbers - use place value and nu	pils should be taught to: nd 5 from 0 , and in tens from ward and backward e of each digit in a two-digit (tens, ones) d estimate numbers using s, including the number line ers from 0 up to 100; use and signs o at least 100 in numerals and words mber facts to solve problems.	By the end of - count in multiples - find 1000 more or - count backwards through - recognise the place valu number (thousands, - order and compar - identify, represent and different - round any number to - solve number and practic the above and with incre - read Roman numerals over time, the numeral concept of ze	ear 4, children: of $6,7,9,25$ and 1000 ess than a given number gh zero to include negative mbers of each digit in a four-digit hundreds, tens, and ones) numbers beyond 1000 d estimate numbers using presentations he nearest 10,100 or 1000 al problems that involve all of singly large positive numbers 100 (I to C) and know that ystem changed to include the o and place value.	By the end of - read, write, order and 000 and determin - count forwards or backw for any given number up - round any whole numbe accuracy - use negative numbers in intervals across zero - solve number and practic the above. - read Roman numerals to written in Roman numer	ear 6, children: mpare numbers up to 10000 the value of each digit rds in steps of powers of 10 1000000 to a required degree of context, and calculate problems that involve all of 000 (M) and recognise years s
	Counting Recite numbers past 5. Say one number for each item in order:1,2,3,4,5. Know that the last number reached when counting a small set of objects tells you how many there are in total (cardinal principle). Show 'finger numbers' up to 5. Link numerals and amounts: for example, showing the right number of objects to match the numeral up to 5 .	Counting Count objects, actions and sounds. Link the number symbol to its cardinal number value. Count beyond 10. Aut 1-focus on counting, numerals and sets of objects 1-5. Aut 2-focus on counting, numerals, sets of objects 110	Counting Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. AUT1 Count to 10, count one more or one less from any number within 10. AUT2 Count to 20, count one more or one less from any number within 20. SPR1Count to 50, count one more or one less from any number within 50. SUM2 Count to 100, count one more or one less from any number within 100. Count numbers to 100 in numerals; count in multiples of twos, fives and tens. AUT 2 NCETM looking at pairs, $2 s$ in even numbers. Counting in multiples of 2 and 5 introduced in SPR1.	Counting Count in steps of 2, 3 and 5 from 0 , and in tens from any number, forward and backward. AU1	Counting Count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number.	Counting Count in multiples of 6, 7, 9, 25 and 1000. Count backwards through zero to include negative numbers.	Counting Count forwards of backwards in steps of powers of 10 for any given number up to 1000000. Count forwards and backwards with positive and negative whole numbers, including through zero.	Counting Count forwards of backwards in steps of powers of 10 for any given number up to 1000000. Count forwards and backwards with positive and negative whole numbers, including through zero.
	Represent Experiment with their own symbols and marks as well as numerals.	Represent Experiment with their own symbols and marks as well as numerals.	Represent Identify and represent numbers using objects and pictorial representations. Read and write numbers to 100 in numerals.	Represent Read and write numbers to at least 100 in numerals and in words. Identify, represent and estimate numbers using	Represent Identify, represent and estimate numbers using different representations. Read and write numbers up to 1000 in numerals and words.	Represent Identify, represent and estimate numbers using different representations. Read Roman numerals to 100 (1 to C) and know that over time, the numeral system changed	Represent Read, write, (order and compare) numbers to at least 1000000 and determine the value of each digit. Read Roman Numerals to 1000 (M) and	Represent Read, write, (order and compare) numbers up to 10 000000 and determine the value of each digit.

			Read and write numbers from 1 to 20 in numerals and words. AU1 up to 10, AUT 2 up to 20, SP1,2 up to 50, SUM 1, 2 up to 100 .	different representations, including the number line. AU1		to include the concept of zero and place value.	recognise years written in Roman numerals.	
	Use PV and Compare and Subitising Develop fast recognition of up to 3 objects, without having to count them individually. (subitising) Show 'finger numbers' up to 5.	Use PV and Compare and Subitising Subitise up to 5 then notice patterns up to 10 . Understand the 'one more than/ one less than' relationship between consecutive numbers. Compare numbers (more than, fewer, less than) Aut 1-conceptually subitising up to 5 , introduce perceptual subitising within 1-5. (noticing groups within amounts) Aut 2-conceptual and perceptual subitising up to 5.	Use PV and Compare Given a number, identify one more and one less AU, SPR, SUM Compare numbers using language greater than, less than, equal to and symbols <,>,=.	Use PV and Compare Recognise the place value of each digit in a two-digit number (tens, ones) Compare and order numbers from 0 up to 100; use <, >> and = signs AU1	Use PV and Compare Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). Compare and order numbers to 1000.	Use PV and Compare Find 1000 more or less than a given number. Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones). Order and compare numbers beyond 1000	Use PV and Compare (Read, write) order and compare numbers to at least 1000000 and determine the value of each digit.	Use PV and Compare (Read, write) and order and compare numbers to 10000 000 and determine the value of each digit.
	Problems \& Rounding	Problems \& Rounding Linked to subitising (perceptual subitising)	Problems \& Rounding Use first, then, now to solve problems	Problems \& Rounding Use place value and number facts to solve problems AU1	Problems \& Rounding Solve number problems and practical problems involving these ideas.	Problems \& Rounding Round any number to the nearest 10, 100 or 1000. Solve number and practical problems that involve all of the above and with increasingly large positive numbers.	Problems \& Rounding Interpret negative numbers in context. Round any number up to 1 000000 to the nearest 10 , 100, 1000, 10000 and 100 000. Solve number problems and practical problems that involve all of the above.	Problems \& Rounding Round any whole number to a required degree of accuracy. Use negative numbers in context, calculate intervals across zero. Solve number and practical problems that involve all of the above.
Vocabulary	Numbers 1-20, count on/ba compare, sort, order, befor same as, ones, pair, how ma different.	lots, more, few, fewer, fter, less, many, most, the , altogether, subitise, same,	20-100 count (on/up/to/from/down), least, fewest, smallest, greater, lesser, equal to, odd, even, units, tens, ten more/less, digit, numeral, figure(s), compare (in) order/a different order, size, value, between, halfway between, above, below	Numbers to one hundred, hundreds, partition, recombine, hundred more/less, represents, exchange, place value column	numbers to one thousand, equivalent, tally multiple of, factor of, rule, relationship, greater than, Roman numerals, halfway approximate, approximately, round to the nearest ten, round to the nearest hundred	ten thousand, hundred thousand, million, count in sixes, sevens, nines, twentyfives and so on to hundreds, next, consecutive, integer, positive, negative above/below zero, minus, negative numbers, one thousand more, one thousand less, round to the nearest thousand	factor pair, divisibility, square number, prime number, ascending/ descending order, ten thousand, hundred thousand	million, round to the neared hundred thousand
Addition \& Subtraction	By the end Num - Have a deep understandi the composition - Subitise (recognise	Reception: ELG: ng of number to 10 , including n of each number. antities without counting) up to 5 .	By the end of Year 2, p - solve problems with - using concr representation numbers, q - applying their incre	pils should be taught to: addition and subtraction: e objects and pictorial including those involving antities and measures sing knowledge of mental and ten methods	By the end of Year 4 (LKS2) - add and subtract nu the formal written m and subtraction wh - estimate and use in answers to a calcula - solve addition and s	pupils should be taught to: bers with up to 4 digits using thods of columnar addition e appropriate rse operations to check on traction two-step problems	By the end of Year 6 (UKS2), - add and subtract wh digits, including using (columnar addition a - add and subtract num increasingly large nu - use rounding to chec determine, in the con	, pupils should be taught to: le numbers with more than 4 formal written methods nd subtraction) bers mentally with mbers answers to calculations and text of a problem, levels of

- Automatically recall (without reference to rhymes, counting or other aids) number bonds to 10 including double facts.

Numerical Patterns ELG:

- Verbally count beyond 20 , recognizing the pattern of the counting system
- Compare quantities up to 10 in different contexts,
two two-digit numbers recognising when one quantity is greater than, or less
adding three one-digit numbers than or the same as another quantity
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly

Recall, Represent, Use	Recall, Represent, Use
	Explore the composition of numbers to 10.

Automatically recall number bonds for numbers 0-10 Aut 1-introduce perceptual subitising for 1-5 Aut 2-composition of numbers up to 5 (incl. number bonds, parts and whole)
Spr- perceptual subitising for 1-10
Composition of numbers (incl number bonds up 10)
recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number
and tens
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Recall, Represent, Use

 subitising for 1-5Aut 2-composition of
numbers up to 5 (incl.
number bonds, parts and whole)
Spr-perceptual subitising for 1-10
Composition of numbers (incl number bonds up 10)

Read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals (=) signs. $(-)$ and equals ($=$) signs.
AU SP SUM Compare AU, SP, SUM
addition and
subtraction statements using language greater suing language greater
than, less than, equal to, and use symbols <, >, =

Represent and use number bonds and related subtraction facts within 20.

Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .

Show that addition of two numbers can be done in any order
(commutative) and subtraction of one number from another cannot.

Recognise and use the inverse relationship between addition and subtraction and use this and solve missing number problems.

AU1
AU2
Add and subtract one- Add and subtract numbers digit and two-digit numbers to 20, including zero.
using concrete objects, pictorial representations, and mentally, including:

- A two-digit number and ones
- A two-digit number and tens
- Two two-digit numbers

Adding three one-digit
numbers

AU1
in contexts, deciding which operations and methods to use and why.
Solve Problems
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

- use their knowledge of the order of operations to carry out calculations involving the four operations
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Recall, Represent, Use

Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Calculations
Perform mental calculations, including those with mixed operations and large numbers.

Use their knowledge of the order of operations to carry out calculations involv the four operations.
Solve Problems

	Solve real world mathematical problems with numbers up to 5 .	Aut 1- introduce perceptual subitising for 1-5 Aut 2-composition of numbers up to 5 (incl. number bonds, parts and whole) Spr- perceptual subitising for 1-10 Composition of numbers (incl number bonds up 10) Discuss mathematical ideas throughout the day (e.g. How many milks will we need, two people are having bananas and 1 is having a pear- how many fruit altogether?)	problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ - 9. \qquad	Solve problems with addition and subtraction: - Using concrete objects and pictorial representations, including those involving numbers, quantities and measures - Applying their increasing knowledge of mental and written methods	Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve problem involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
Vocabulary	Add, more, altogether, t ones less, equals, equal total, compare, more, fe	ay, number line, one more, uble, half, how many, make,	Number bonds, addition, plus, sum, greater, inverse, near double, halve, is the same as, (including equals sign), difference between, how many more to make...? how many more is...than...? how much more is....?, subtract, minus, how many fewer is...than...? how much less is....?	Digit, greater than, less than	Sum, addend, addend, total, altogether, ten more, one hundred more, one hundred less, difference between, minus, column, regroup, exchange, rename, value, minuend, subtrahend, difference	Addend, inverse, represent, increase, decrease, minuend, subtrahend, difference, thousand $/ \mathrm{s}$, less than, more than, tenth/s,	Ten thousand/s, hundred thousand/s, multiple, negative number, positive number,	millions
Multiplication \& Division	By the end of Reception:		By the end of Year 2, pupils should be taught to: - recall and use multiplication and division facts for the 2 , 5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.		By the end of Year 4, (LKS2), pupils should be taught to: - recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects.		By the end of Year 6, (UKS2), pupils should be taught to: - identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply and divide numbers mentally drawing upon known facts - multiply and divide whole numbers and those involving decimals by 10,100 and 1000 - multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context	
	Introduce language representation. Unde made up of parts Understand that do	resent, Use art and whole using visual that a whole object can be you cannot always see. is the same amount again.	Recall, Represent, Use Make equal groups grouping equal groups, sharing equal groups Make arrays	Recall, Represent, Use Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including	Recall, Represent, Use Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.	Recall, Represent, Use Recall multiplication and division facts for multiplication tables up to 12×12.	Recall, Represent, Use Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall, Represent, Use Identify common factors, common multiples and prime numbers.

> Investigate equal sets of objects to find whole amount. Share objects fairly into groups of equal amounts

Count in multiples of 2,5 and
100
recognising odd and
even numbers.
Show that multiplication
of two numbers can be
done in any order
(commutative) and
division of one number
by another cannot.
AU2
.
 mental calculations.
Calculations
Calculate mathematical
statements for

$$
\begin{aligned}
& \text { multiplication and } \\
& \text { division within the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { division within the } \\
& \text { multiplication table }
\end{aligned}
$$

$$
\begin{aligned}
& \text { multiplication tables } \\
& \text { and write them using }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and write them using } \\
& \text { the multiplication (x), }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the multiplication (x), } \\
& \text { division (/) and equals }
\end{aligned}
$$

$$
\begin{aligned}
& \text { division (/ } \\
& \text { (=) signs. }
\end{aligned}
$$

Solve problem involving multiplication and division, using

 materials arrays,| and division, using materials arrays, | involving multiplication and division, including positive |
| :---: | :---: |
| repeated addition, | integer scaling problems and |

Solve Problem

Solve problems involving multiplying and adding multiplying and add including using the
distributive law to multiply distributive law to multiply
two digit numbers by one

Multiply and divide numbers mentally drawing upon known facts.

Multiply and divide whole numbers and those involving decimals by 10,100 and 1000

Know and use the
vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
Establish whether a number up to 100 is prime and reca prime numbers up to 19 .
Recognise and use square numbers and cube numbers, and the notation for squared
(2) 2 and cubed (3) $\left(^{2}\right.$) and cubed (${ }^{3}$)

Multiply numbers up to Multiply numbers 4 digits by a one- or two-digit number usin a formal written method, including long
multiplication for twodigit numbers.

Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context

Solve Problems
Solve problems involving multiplication and division including using their knowledge of factors and

Use estimation to check answers to calculations and determine, in the context of degree of accuracy.

Use their knowledge of the order of operations to carry out calculations involving the four operations.

			concrete objects, pictorial representations and arrays with the support of the teacher.	mental methods and multiplication and division facts, including problems in contexts AU2 SP1	correspondence problems in which n objects are connected to m objects.	digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects.	multiples, squares and cubes. Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	
Vocabulary		Times, counting in ones, twos, fives, tens, lots of, groups of, once, twice, five times, sharing, share, set, group, left, left over	Odd, even, count in twos, fives, tens, (forwards from/backwards from), how many times?, multiples of, multiply by, repeated addition, array, row, column, halve, share equally, group in pairs, threes etc., equal groups of, divide, divided by	Count in multiples of 3	multiple, factor, product, division, remainder, doubling, halving, multiplication fact, division fact, divisible, represented	inverse, square, squared, cube, cubed, divisor, dividend, quotient, remainder, equivalent	Largest common multiple, lowest common factor, positive, integers, prime numbers, brackets	Multiplicatively, composite number, scale factor, ratio
		Reception:	By the end of Year 2, pup - recognise, find, name and and 43 of a length, sha - write simple fractions recognise the equ	pils should be taught to: write fractions $31,41,42$ e, set of objects or quantity orample, 21 of $6=3$ and valence of 42 and 21 .	By the end of Year 4, (LKS2), - recognise and show, common equivalent - count up and down in hundredths arise wh hundred and dividing - solve problems involvin fractions to calculate divide quantities, inc where the answer is - add and subtract fractio denominator	pupils should be taught to: using diagrams, families of ractions hundredths; recognise that n dividing an object by one tenths by ten. ing increasingly harder quantities, and fractions to uding non-unit fractions whole number tions with the same	By the end of Year 6 (UKS2) - use common factors to si multiples to express fract - compare and order fractio - add and subtract fraction and mixed numbers, using fractions - multiply simple pairs of p answer in its simplest form 1/8] - divide proper fractions by $1 / 3 \div 2=1 / 6]$	pupils should be taught to: mplify fractions; use common ons in the same denomination ns, including fractions > 1 with different denominators the concept of equivalent oper fractions, writing the [for example, $1 / 4 \times 1 / 2=$ whole numbers [for example,
Fractions	Recognise	Recognise Introduce language of part and whole using visual representation. Understand that a whole object can be made up of parts that you cannot always see. Understand that double is the same amount again. Understand that half is sharing equally in two parts.	Recognise and Write Recognise, find and name a half as one of two equal parts of an object, shape or quantity. Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	Recognise and Write Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity. SP1 SP2	Recognise and Write Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 . Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators. Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators.	Recognise and Write Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	Recognise and Write Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements . 1 as a mixed number (for example, $2 / 5+4 / 5=6 / 5=1$ $1 / 5)$.	
		Compare Investigate sets of objects to make double of that amount.	Compare	Compare Recognise the equivalence of $2 / 4$ and $1 / 2$.	Compare Recognise and show, using diagrams, equivalent	Compare Recognise and show, using diagrams, families of	Compare Compare and order fractions whose denominators are all	Compare Use common factors to simply fractions; use common multiples to

				$\begin{array}{\|l\|l\|} \hline \text { SP1 } \\ \text { SP2 } \end{array}$	fractions with small denominators. Compare and order unit fractions, and fractions with the same denominators.	common equivalent fractions.	multiples of the same number.	express fractions in the same denomination. Compare and order fractions, including fractions >1.
		Calculations Share objects equally between two sets.	Calculations	Calculations Write simple fractions for example, $1 / 2$ of $6=3$ SP1 SP2	Calculations Add and subtract fractions with the same denominator within one whole (for example $5 / 7+1 / 7=6 / 7$).	Calculations Add and subtract fractions with the same denominator.	Calculations Add and subtract fractions with the same denominator and denominators that are multiples of the same number. Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.	Calculations Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. Multiple simple pairs of proper fractions, writing the answer in its simplest form (for example $1 / 4 \times 1 / 2=$ $1 / 8)$. Divide proper fractions by whole numbers (for example, $1 / 3$ divided by $2=$ 1/6).
Fraction Vocabulary	Double, half, whole		Whole, equal parts, four equal parts, one half, two halves, a quarter, two quarters	Three quarters, one third, a third, equivalence, equivalent	mixed number, numerator denominator, sixths, sevenths, eighths, tenths	hundredths, equivalent proportion	proper/improper fraction, thousandths	
Decimals					By the end of Year 4, p - recognise and write number of tenths or - recognise and write 1,43 - find the effect of dividir number by 10 and 1 digits in the answer - round decimals with nearest whole numb - compare numbers w decimal places up to - solve simple measur involving fractions a places.	pils should be taught to: ecimal equivalents of any undredths ecimal equivalents to 41,2 ing a one- or two-digit , identifying the value of the ones, tenths and hundredths ne decimal place to the h the same number of wo decimal places and money problems decimals to two decimal	y the end of Year 6 (UKS2) - associate a fraction decimal fraction equ for a simple fraction - identify the value of three decimal place numbers by 10,100 three decimal place - multiply one-digit n places by whole num - use written division answer has up to tw	pupils should be taught to: ith division and calculate valents [for example, 0.375] for example, 3/8] each digit in numbers given to and multiply and divide nd 1000 giving answers up to mbers with up to two decimal bers methods in cases where the decimal places
						Recognise and Write Decimal equivalents of any number of tenths or hundredths. Decimal equivalents to $1 / 4,1 / 2,3 / 4$.	Recognise and Write Read and write decimal numbers as fractions (for example, $0.71=71 / 100$). Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.	Recognise and Write Identify the value of each digit in numbers given to three decimal places.
						Compare Round decimals with one decimal place to the nearest whole number.	Compare Round decimals with two decimal places to the	

					Compare numbers with the same number of decimal places up to two decimal places.	nearest whole number and to one decimal place. Read, write, order and compare numbers with up to three decimal places.	
					Calculations Find the effect of dividing a one or twodigit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths.	Calculations Solve problems involving number up to three decimal places.	Calculations Multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places. Multiply one-digit numbers with up to two decimal places by whole numbers. Use written division methods in cases where the answer has up to two decimal places. Solve problems which require answers to be rounded to specified degrees of accuracy.
Decimals Vocabulary					decimal point, decimal place, decimal		
Percentages				- recognise and show, \mathbf{u} common equivalent fr - count up and down in hundredths arise when hundred and dividing - solve problems involvi fractions to calculate q divide quantities, inclu where the answer is a - add and subtract fract denominator - recognise and write d number of tenths or h - recognise and write d 1,43 - find the effect of divid number by 10 and 100 digits in the answer as - round decimals with o nearest whole number - compare numbers with decimal places up to tw - solve simple measure involving fractions and places.	ould be taught to: using diagrams, families of ractions hundredths; recognise that n dividing an object by one tenths by ten. ing increasingly harder quantities, and fractions to uding non-unit fractions whole number tions with the same ecimal equivalents of any undredths ecimal equivalents to 41 , 2 ding a one- or two-digit , identifying the value of the ones, tenths and hundredths ne decimal place to the h the same number of wo decimal places and money problems decimals to two decimal	- recognise the per that per cent rela hundred', and wris denominator 100 - solve problems w and decimal equiv - recall and use equ fractions, decimal different contexts	ils should be taught to: mbol (\%) and understand number of parts per entages as a fraction with a decimal quire knowing percentage of $1 / 2,1 / 4$ ces between simple percentages, including in
					Solve simple measure and money problems involving fractions and decimals to two decimal places.	Recognise the per cent symbol (\%) and understand that per cent related to 'number of parts per hundred', and write percentages as a fraction	Associate a fractions with division and calculate decimal fraction equivalents (for example, 0.375) for a simple fraction (for example, $3 / 8)$.

							- enumerate possibilit variables.	of combinations of two
								Use simple formulae. Generate and describe linear number sequences. Express missing number problems algebraically. Find pairs of numbers that satisfy an equation with two unknowns. Enumerate possibilities of combinations of two variables.
Algebra Vocabulary								formula, formulae, equation, unknown, variable
Measurement	By the end Num - Have a deep understan the composi - Subitise (recognise - Automatically recal counting or oth inclu Numerical - Verbally count beyond the co - Compare quantities recognising when one than or the sam - Explore and represent 10 , including evens and quantities can	Reception: er ELG: ng of number to 10 , including of each number. uantities without counting) up to 5. (without reference to rhymes, aids) number bonds to 10 , ng double facts. Patterns ELG: 20 , recognizing the pattern of nting system. to 10 in different contexts, uantity is greater than, or less as another quantity. atterns within numbers up to odds, double facts and how e distributed evenly.	By the end of Year 2, pup - choose and use appropr and measure length/heis mass (kg/g); temperature nearest appropriate thermometers - compare and order lengt record the res - recognise and use symb (p); combine amount - find different combinatio amounts of money solve context involving additio the same unit, in - compare and seq - tell and write the time to past/to the hour and draw show - know the number of number of	pils should be taught to: ate standard units to estimate ight in any direction (m / cm); (${ }^{\circ}$); capacity (litres $/ \mathrm{ml}$) to the unit, using rulers, scales, nd measuring vessels hs, mass, volume/capacity and ults using >, < and = ols for pounds ($£$) and pence to make a particular value ns of coins that equal the same simple problems in a practical n and subtraction of money of cluding giving change uence intervals of time five minutes, including quarter w the hands on a clock face to these times minutes in an hour and the hours in a day	By the end of Year 4 - Convert betwee example, kilome rectili and and metres - find the area of squares - estimate, comp measures, inclu - read, write and and digital 12- a - solve problems minutes; minut weeks to days.	pupils should be taught to: erent units of measure [for metre; hour to minute] the perimeter of a uding squares) in centimetres near shapes by counting d calculate different oney in pounds and pence rt time between analogue -hour clocks ing converting from hours to econds; years to months;	By the end of Year 6 (UKS2) - use simple formulae - generate and descri - express missing num - find pairs of numbers two unknowns - enumerate possibilit variables.	pupils should be taught to: linear number sequences er problems algebraically that satisfy an equation with s of combinations of two
	Using Measures Make comparisons between objects relating to size, length, weight and capacity.	Using Measures Compare length, weight and capacity Model comparative language using the word 'than' e.g. 'This is heavier than that.' Ask children to test predictions such as pour the jug into the teapot, which will hold more? Compare objects of different lengths, weights and capacities. Use non-standard units to measure length and height of	Using Measures Compare, describe and solve practical problems for: - Lengths and heights (for example, long/short, longer/shorter, tall/short, double/half) - Mass/weight (for example, heavy/light, heavier than, lighter than) - Capacity and volume (for example, full/empty, more than, less than, half, full, quarter)	Using Measures Choose and use appropriate standard units to estimate and measure length/height in any directions (m / cm); mass (kg/g); temperature (oC); capacity (litre/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using >, < and $=$.	Using Measures Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity $(1 / \mathrm{ml})$.	Using Measures Convert between different units of measure (for example, kilometre to metre; hour to minute). Estimate, compare and calculate different measures.	Using Measures Convert between different units of metric measure (for example) kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre). Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. Use all four operations to solve problems involving measure (for	Using Measures Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation up to three decimal places.

	objects, how heavy an object is. Use balance scales to find heaviest, lightest.	- Time (for example, quicker, slower, earlier, later) Measure and begin to record the following: - Lengths and heights - Mass/weight - Capacity and volume - Time (hours, minutes, seconds)	SU1			example, length, mass, volume, money) using decimal notation, including scaling.	Convert between miles and kilometres.
	Money Introduce coins in role play and understand that coins show different amounts. Incorporate money and coins into calculations and examples when solving addition and subtraction problems.	Money Recognise and know the value of different denominations of coins and notes	Money Recognise and use symbols for pounds (f) and pence (p); combine amounts to make a particular value. Find different combinations of coins that equal the same amounts of money. Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change. AU2	Money Add and subtract amounts of money to give change, using both $£$ and p in practical contexts.	Money Estimate, compare and calculate different measures, including money in pounds and pence.	Money Use all four operations to solve problems involving measure (for example, money).	
Time Begin to describe a sequence of events, real, or fictional using words such as 'first' 'then'...	Time As part of daily routines use language such as now and next, first, then. Visual timetable to organise the day. Calendar to discuss days of the week and Months of year. Link to UW with discussion on seasons.	Time Sequence events in chronological order using language (for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening). Recognise and use language relating to dates, including days of the week, weeks, months and years. Tell the time to the hour and half past the house and draw the hands on a clock face to show these times.	Time Compare and sequence intervals of time. Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. Know the number of minutes in an hour and the numbers of hours in a day.	Time Tell and write the time from an analogue clock, including using Roman numerals from 1 to X11, and 12-hour and 24-hour clocks. Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. Know the number of seconds in a minute and the number of days in each month, year and leap year. Compare durations of events (for example to calculate the time taken by particular events of tasks).	Time Read, write and convert time between analogue and digital 12 - and 24 -hour clocks. Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Time Solve problems involving converting between units of time.	Time Use, read, write and convert between standard units, converting measurements of time from a small unit of measure to a larger unit, and vice versa.
				Perimeter, Area and Volume Measure the perimeter	Perimeter, Area and Volume	Perimeter, Area and Volume	Perimeter, Area and Volume

				of simple 2-D shapes.	Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. Find the area of rectilinear shapes by counting squares.	Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres. Calculate and compare the area of rectangles (including squares), and including using standard unites, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes. Estimate volume (for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes) and capacity (for example, using water).	Recognise that shapes with the same areas can have different perimeters and vice versa. Recognise when it is possible to use formulae for area and volume of shapes. Calculate the area of parallelograms and triangles. Calculate, estimate and compare volume of cubes and cuboids using standard unites, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other unites (for example, mm^{3} and km^{3}).
Vocabulary	Days of the week, week, month, year, weekend, birthday, holiday, morning, afternoon, evening, night, midnight, bedtime, dinnertime, playtime, today, yesterday, tomorrow, before, after, next, last, now, soon, early, late, quick, fast, slow, old, new, watch, clock, always, never, first, size, weight, capacity, time, money, Long, longer, longest short, shorter, shortest, heavy, light, empty, full, tall, small, large, thick, thin, low, deep, ruler, far, near, holds, container, weigh, weights, coin, pound, pence cost, money, penny, buy, sell, pay, price, how many?	Time and Money Seasons: Spring, Summer, Autumn, Winter Quicker, quickest, quickly, faster, fastest, slower, slowest, slowly, older, oldest, newer, newest, takes longer, takes less time, hour, o'clock, half past, hands, how long ago? How long will it be to...?, how long will it take to...?, how often?, sometimes, usually, once, twice, second, third etc., estimate, close to, about the same as, just over/under, too many/few, not enough, enough Spend, spent, change, dear(er), costs more, costs less, costs the same as, how much? Length, Mass \& Capacity Size, bigger, larger, length, width, height, depth, taller, tallest, high, higher, highest, wide, narrow, shallow, close, Metre, metre stick Half full, balances, heavier, heaviest, lighter, lightest, scales	Quarter past/to, fortnight, temperature (degrees), $\mathrm{m} / \mathrm{cm}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$	scale, approximately, millimetre, centimetre, metre, kilometre, mile, perimeter, tape measure, capacity, volume, temperature degree centigrade, calendar, o'clock, half past, quarter past, quarter to, 5, 10, 15 ... minutes past, a.m., p.m. digital/analogue clock/watch, Roman numerals, 12-hour clock, 24-hour clock, cheaper, total	unit, standard unit, metric unit, square centimetre (cm^{2}), measuring cylinder, millennium, leap year, timetable, arrive, depart	imperial unit, square metre (m^{2}), square millimetre $\left(\mathrm{mm}^{2}\right)$, pint, gallon, discount currency, radius, diameter	yard, foot, feet, inch, inches, circumference, centilitre cubic centimetres $\left(\mathrm{cm}^{3}\right)$, cubic metres (m^{3}), cubic millimetres $\left(\mathrm{mm}^{3}\right)$, cubic kilometres $\left(\mathrm{km}^{3}\right)$, profit, loss
Geometry	By the end of Reception: Numerical Patterns ELG: - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	By the end of Year 2, pupil Propertie - identify and describe th including the number of ver - identify and describe including the number	ils should be taught to: of shapes: e properties of 2-D shapes, sides and line symmetry in a ical line e properties of 3-D shapes, f edges, vertices and faces	By the end of - compare and cla quadrilaterals properties and - identify acute order angles u - identify lines o	hould be taught to: eometric shapes, including gles, based on their se angles and compare and right angles by size try in 2-D shapes presented	By the end of Year 6 - draw 2-D shapes usin - recognise, describe including making net - compare and classify their properties and in any triangles, quadr polygons	ould be taught to: iven dimensions and angles build simple 3-D shapes, ometric shapes based on s and find unknown angles terals, and regular

		- identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D and 3-D shapes and everyday objects Position and direction: - order and arrange combinations of mathematical objects in patterns and sequences - use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise).		in different orientations - complete a simple symmetric figure with respect to a specific line of symmetry. - describe positions on a 2-D grid as coordinates in the first quadrant - describe movements between positions as translations of a given unit to the left/right and up/down - plot specified points and draw sides to complete a given polygon.		- illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius - recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. - describe positions on the full coordinate grid (all four quadrants) - draw and translate simple shapes on the coordinate plane, and reflect them in the axes.	
Pattern Talk about and identify the patterns around them. For example; stripes on clothes, designs on rugs, wallpaper. Use informal language like 'pointy', 'spotty', 'blobs' etc. Extend and create $A B A B$ patterns. Notice and correct an error in a repeating pattern.	Pattern Continue, copy and create repeating patterns.(make patterns with varying rules e.g. $A B, A B B, A B B C)$						
2-D Shapes Talk about and explore 2D shapes using informal and mathematical language (sides, corners, straight, flat, round). Combine shapes to make new ones, e.g. An arch, a bigger triangle.	2-D Shapes Compose and decompose shapes so that children recognize a shape can have other shapes within it, just as numbers can. Select, rotate and manipulate shapes in order to develop spatial reasoning skills.	2-D Shapes Recognise and name common 2-D shapes (for example, rectangles (including squares), circles and triangles).	2-D Shapes Identify and describe the properties of 2-D shapes, including the number of sides and lines of symmetry in a vertical line. Identify 2-D shapes on the surface of 3-d Shapes, (for example, a circle on a cylinder and a triangle on a pyramid) Compare and sort common 2-D shapes and everyday objects.	2-D Shapes Draw 2-D shapes.	2-D Shapes Compare and classic geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. Identify lines of symmetry in 2-D shapes presented in different orientations.	2-D Shapes Distinguished between regular and irregular polygons based on reasoning about equal sides and angles. Use the properties of rectangles to deduce related facts and find missing lengths and angles.	2-D Shapes Draw 2-D shapes using given dimensions and angles. Compare and classify geometric shapes based on their properties and sizes. Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.
3-D Shapes Talk about and explore 3D shapes using informal and mathematical language (sides, corners, straight, flat, round). Select shapes appropriately flat surfaces for building, a triangular prism for a roof etc.	3-D Shapes Compose and decompose shapes so that children recognize a shape can have other shapes within it, just as numbers can. Select, rotate and manipulate shapes in order to develop spatial reasoning skills.	3-D Shapes Recognise and name common 3-dD shapes (for example, cuboids (including cubes), pyramids and spheres).	3-D Shapes Recognise and name common 3-D shapes (for example, cuboids (including cubes), pyramids and spheres). Compare and sort common 3-D shapes and everyday objects.			3-D Shapes Identify 3-D shapes, including cubes and other cuboids, from 2-D representations.	3-D Shapes Recognise, describe and build simple 3-D shapes, including making nets.

				${ }^{* * * * *}$				
					Angles and Lines Recognise angles as a property of shape or a description of a turn. Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are grater than or less than a right angle. Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Angles and Lines Identify acute and obtuse angles and compare and order angles up to two right angles by size. Identify lines of symmetry in 2-D shapes presented in different orientations. Complete a simple symmetric figure with respect to a specific line of symmetry.	Angles and Lines Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles. Draw given angles, and measure them in degrees. Identify: - Angles at a point and one whole turn (total 360 degrees) - Angles at a point on a straight line and $1 / 2$ a total (total 180 degrees) - Other multiples of 90 degrees	Angles and Lines Find unknown angles in any triangles, quadrilaterals, and regular polygons. Recognise angles where they meet as a point, are on a straight line, or are vertically opposite, and find missing angles.
	Position and Direction Understand position through words alone, e.g." The bag is under the table", with no pointing. Describe a familiar route. Discuss routes and locations using words like 'in front of' and 'behind.'	Position and Direction Select, rotate and manipulate shapes in order to develop spatial reasoning skills.	Position and Direction Describe position, direction and movement, including whole, half, quarter and three-quarter turns.	Position and Direction Order and arrange combinations of mathematical objects in patterns and sequences. Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and angles for quarter, half and threequarter turns (clockwise and anti-clockwise).		Position and Direction Describe positions on a 2-D grid as coordinates in the first quadrant Describe movements between positions as translations of a given unit to the left/right and up/down Plot specified points and draw sides to complete a give polygon	Position and Direction Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	Position and Direction Describe positions on the full coordinate grid (all four quadrants) Draw and translate simple shapes on the coordinate plane, and reflect them in the axes
Vocabulary	Position, distance, after, before, in, on, inside, under, on top of, behind, next to, above, below, top, bottom, side, outside, around, underneath, in front, front, back, before, middle, up, down forwards, backwards, across, close, far, along, to, from, slide, roll, turn, stretch, bend, move	Position \& Direction: Position, distance, after, before, in, on, inside, under, on top of, behind, next to, above, below, top, bottom, side, outside, around, underneath, in front, front, back, before, middle, up, down forwards, backwards, across, close, far, along, to, from, slide, roll, turn, stretch, bend, move Shape: Curve, straight, line, corner, edge, flat, square, triangle, oblong, circle, semi-circle (etc.), point, solid, inside, on, under, turn.	Position \& Direction: Over, beside, opposite, apart, between, edge, centre, corner, direction, journey, left, right, sideways, near, through, towards, away from, movement, whole turn, half turn. Properties of Shape: Pyramid, cone, cylinder, curved, hollow, solid, corner (point, pointed), face, side, edge	Position \& Direction: Rotation, clockwise, straight line, ninety degree turn, right angle Properties of Shape: Smaller, symmetrical, line of symmetry, fold, match, mirror line, reflection, pattern, repeating pattern, vertices, vertex pentagon, hexagon, octagon, circular, triangular, right angle	Position and Direction: compass point, north, south, east, west, $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$, horizontal, vertical, diagonal Angles: angle ... is a greater/smaller angle than, acute angle, obtuse angle	Position and Direction: construct, sketch, centre, right-angled base, squarebased, reflect, reflection, north-east, north-west, south-east, south-west, translate, translation, rotate, rotation Properties of Shape: regular, irregular, 2-D, twodimensional, oblong, rectilinear, equilateral triangle, isosceles triangle, scalene triangle, heptagon, parallelogram, rhombus, trapezium polygon, 3-D, three-dimensional, tetrahedron, polyhedron Angles:	Properties of Shape: regular, irregular, 2-D, twodimensional, oblong, rectilinear, equilateral triangle, isosceles triangle, scalene triangle, heptagon, parallelogram, rhombus, trapezium polygon, 3-D, three-dimensional, tetrahedron, polyhedron Angles: set square angle measurer, compass	Properties of Shape: net, intersecting, intersection, plane, kite

				set square angle measurer, compass		
Statistics	By the end of Reception:	By the end of Year 2, pupils should be taught to: - interpret and construct simple pictograms, tally charts, block diagrams and simple tables - ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totaling and comparing categorical data	By the end of Year 4, children should be taught to: - interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. - solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.		By the end of Year 6, ch - interpret and constr and use these to sol - calculate and interp	dren should be taught to: ct pie charts and line graphs problems t the mean as an average.
		Present and Interpret Interpret and construct simple pictograms, tally charts, block diagrams and simple tables.	Present and Interpret Interpret and present data using bar charts, pictograms and tables.	Present and Interpret Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.	Present and Interpret Complete, read and interpret information in tables, including timetables.	Present and Interpret Interpret and construct pie charts and line graphs and use these solve problems.
		Solve Problems Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity, Ask and answer questions about totalling and comparing categorical data.	Solve Problems Solve one-step and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in scaled bar charts and pictograms and tables.	Solve Problems Solve comparison, sum and different problems using information presented in bar charts, pictograms tables and other graphs.	Solve Problems Solve comparison, sum and different problems using information presented in a line graph.	Solve Problems Calculate and interpret the mean as an average.
Vocabulary		Count, tally, sort, vote, graph, block graphs, pictogram, represent, group, set, list, table , label, title, most popular, most common, least popular, least common	chart, bar chart, frequency table, Carroll diagram, Venn diagram, axis	survey, questionnaire, data	bar line chart, line graph	pie chart, mean (mode, median, range as estimates for this) statistics, distribution

